


GWT + HTML5 Can Do What!?

Ray Cromwell, Stefan Haustein, Joel Webber
May 2010



View live notes and ask questions about 
this session on Google Wave
http://bit.ly/io2010-gwt6



Overview

● HTML5 and GWT

● Demos

1. Eyes
2. Ears
3. Guns



What is HTML5

● Formal definition 
○ Best practices for HTML interpretation
○ Audio and Video elements
○ Other additional elements

● Colloquial meaning
○ Canvas
○ WebGL
○ WebSockets
○ CSS 3
○ LocalStorage
○ et al



GWT support for HTML5

● Very easy to build Java wrappers
● Many already exist in open-source projects

● Will be moving many of these into GWT proper (~2.2)
● Not part of GWT core yet

● GWT has always strived to be cross-browser
● Most new features are not available on all browsers



● OpenGL ES 2.0, made Javascript-friendly
● Started by Canvas3D work at Mozilla
● Spread to Safari and Chrome via WebKit
● Canvas.getContext("webgl");

WebGL



● No fixed function pipeline (no matrix operations, no 
predefined surface models)

● Supports the GL Shader Language (GLSL)
○ Extremely flexible
○ Can be used for fast general computation, too

● Distinct concepts of native arrays and buffers
○ Buffers may be stored in graphics card memory 
○ Arrays provide element-wise access from JS
○ Data from WebGL Arrays needs to be copied to 

WebGL buffers before it can be be used in graphics 
operations

WebGL
Differences to OpenGL 1.x



Eyes: Image Processing



Photoshop Filters in the Browser

● Work on megapixel images
● At interactive frame rates
● Provide general purpose operations

○ scale, convolve, transform, colorspace ops
● Leverage native acceleration where possible

Image Processing



Pipeline / Tree Architecture

Source
LoadOp

Convolve

ColorOp

Threshold Blend Display

Image Processing



Two implementations

● 2D CanvasPixelArray "software" based (JS)
○ Likely slow on un-scaled megapixel images
○ Will need a "Preview" mode for interactivity

● WebGL Pixel Shader "hardware" version
○ Hopefully runs blisteringly fast

Image Processing



Example Operation: Convolution

● Weighed sum of nearby NxN pixels
● Many photoshop filters based on convolutions
● Sharpen Filter

[+0 -1 +0]
[-1 +5  -1]
[+0 -1 +0]

● Multiply upper left pixel by 0, upper pixel by -1, upper 
right by 0, multiply current pixel by 5, etc

● Add everything together, write result pixel back
● Notice all weights sum to 1 (-1 -1 -1 -1 5). This properly 

preserves brightness 
● Other common convolutions: Gaussian Blur (good for 

drop shadow, glow), Unsharpen, Emboss/Edge Detect

Image Processing



Pure Java Implementation

● NxN convolve requires N*N multiplies, and adds
● For a 5x5 convolve on a 1024x1024 image

○ 25 million multiplies, adds, loads, and stores
○ TIMES 3 (red, green, blue, sometimes 4 for alpha)
○ up to 100 million operations
○ In Javascript!?

● 2048x2048 (4 megapixel) image is 4 times worse
● However, a 640x480 image is ~4x better

Image Processing



WebGL Implementation

● From GPU Gems and NVidia SDK
○ developer.nvidia.com/GPUGems/gpugems_ch27.html

● Load image into <canvas> or <img>
● Bind as texture
● Render screen-aligned rectangle with texture

○ to offscreen framebuffer
● Attach pixel shader with filter (e.g. convolve)
● Rinse / Wash / Repeat
● Copy final result back to <canvas>
● DEMO TIME!



Summary

● IMGwt Imaging API
○ Pure Java and WebGL impl available
○ Can run on AppEngine for cloud imaging
○ Android port also possible
○ Compact DSL: 

Imaging.load(url).convolve(array).to(widget);
● WebGL filters are 1,700 times faster than JS

○ 7000ms vs 4ms for 1024x1024 image, 3x3 kernel



Ears: Audio Processing



Demo First!



Port of Commodore 64 Java emulator using GWT

● Emulates cycle-accurate C64 hardware @ 1mhz
● That means, 1 million times per second, it is

○ Loading an opcode and emulating CPU
○ Emulating memory fetch semantics
○ For I/O chips, it is calculating next values of every 

register
○ For Sound chip, there are 3 voices / waveform 

generators
○ In addition to emulating digital logic of the SID chip, it 

emulates analog filter circuitry



Port of Commodore 64 Java emulator using GWT

● SID music is not data, it is 6502 assembly code!
● Can't be played back perfectly without such emulation
● Output of emulation step is 1 16-bit 44khz sample, 

collected into a buffer
● When buffer fills, it is PCM-encoded into audio/wave 

format
● Result is then base64 encoded into dataURI
● Handled off to <audio> element



Guns: Quake II in the Browser



● There is a Java port of the Quake II C source code 
called "Jake2"

● Could we use GWT and WebGL to cross-compile 
Jake2 to Javascript -- and run it in a browser 
without any plugins?

● Let's see...

Quake II in the Browser
The Idea



Demo time!



● Rendering 
○ Lightweight Java OpenGL APIs (LWJGL) is based on OpenGL 

1.x and uses Java nio buffers for data transfer
○ WebGL is based on OpenGL ES 2.0  (No fixed function 

pipeline) and uses WebGL arrays and buffers
○ No development mode support for WebGL in GWT

● Resource Loading
○ No file system in the browser
○ XHRs are asynchronous -- do not fit into control flow
○ LocalStore is synchronous but has limited capacity

● Networking: No UDP support 
● Some Java APIs used in Jake2 are missing in GWT
● Performance: We had no idea if it would be fast enough

Quake II in the Browser
Problems porting Jake2 to GWT



It would be possible to emulate the missing GL 1.x fixed 
function pipeline, but...

● A pure drop-in LWJGL emulation would not take 
advantage of the DOM based image loading capabilities 
of WebGL

● Handling images at a pixel level for transfer to WebGL 
seemed too expensive in Javascript

● We needed slightly different signatures to support 
WebGL buffers (will come back to this later)

Quake II in the Browser
Renderer port: Drop-in LWJGL emulation?



● Inserted an intermediate abstraction layer for Java and 
GWT that is close to the LWJGL API and still uses nio 
buffers (class AbstractGLAdapter) 

● Java nio buffers were simple to emulate using WebGL 
arrays 
○ Nice property of dev mode: 

The nio buffer emulation falls back to pure Java nio in 
dev mode

Quake II in the Browser
Renderer port



Quake II in the Browser
Renderer port

GLAdapter

LWJGLAdapter AbstractGL20Adapter Matrix operations, 
projection etc.

WebGLAdapterWireframeRenderer

Works with 
Graphics2D (pure 

Java) and 
Canvas2D based 
rendering context





● Trivial translation from GL 1.x to WebGL is to turn all calls 
that set vector data into sequences of 
glBindBuffer(), glBufferData(), 
glVertexAttribPointer()

● To make this faster, we changed in the code to make sure 
that static data (level geometry, static lightmap 
coordinates) is only copied to a buffer once, and then 
reused

● In the code, we did this by assigning an unique id to 
reused buffers, so we can identify and skip the copy step 
for WebGL, but still run the code with LWJGL in pure 
Java (see glVertexAttribPointer in WebGLAdapter)

Quake II in the Browser
WebGL buffer support



● Ported GL_DrawAliasFrame in the Mesh class from 
glDrawElements() to glDrawArrays() to reduce number of 
data transfer calls

● Re-use part of the GL setup when rendering strings of 
characters, reducing the number of GL calls

Quake II in the Browser
Other rendering improvements



● Texture Loading
○ Defer the corresponding GL calls to the onload event, 

using a "holodeck" texture in the meantime
(see ImageLoader in GwtWebGLRenderer)

○ Straightforward, little impact on the control flow
○ The sizes of all images (needed when building the 

model) are sent to the client as JSON in index.html

● Models and Maps
○ Quake code assumes synchronous resources
○ Required significant refactoring to load models and 

maps asynchronously
○ The main trick was to skip frames while resource 

loading XHRs are pending

Quake II in the Browser
Porting resource loading to async IO 



● Replaced UDP with WebSockets

● With the renderer, async IO and networking 
implementations, we got multiplayer games running.

Quake II in the Browser
Networking and multiplayer



● Ironically, multiplayer support was the easy part
○ Did not need to port the server logic

● We wanted to get the demo running, so we would have 
something that we could use as a reproducible 
benchmark

● After making sure the required additional classes would 
compile, neither single player nor the demos worked

● The error must be somewhere in our changes, but diff 
showed changes in every single source file...

Quake II in the Browser
Single player and demos



● Instead of trying to fully understand what goes wrong in 
one of the >200 classes, we tried to reduce the 
differences 

● Reverted all unnecessary changes such as import 
cleanups, package changes and formatting changes 

● Replaced other changes in the code with emulations 
where possible
○ Added a simple file system simulation, based on the 

local storage 
API (File, RandomAccessFile, LocalStorage) for 
saving preferences and games

○ Ported some additional parts of java.util
○ Pushed down networking changes from the Netchan 

and Msg classes to the lowest level (NET)

Quake II in the Browser
How do we find the bugs for single player and demos?



● Reduced the number of classes with differences to about 
60*
○ Better manageable set of classes

● Also reduced the amount of changes in the remaining 
classes

● This did not provide much insight into the nature of the 
bugs we had in our code, but made them go away :)

* Before copyright header cleanup

Quake II in the Browser
Single player and demo result



● Mesh animation:
○ Quake II animations based on keyframes
○ Point-cloud linear interpolation: terrible in Javascript
○ Move this to the vertex shader

● GWT compiler optimizations:
○ Initializing small arrays is too complex
○ Lazy static initializers hit too often

● Browser improvements:
○ Parsing binary data is incredibly slow in Javascript
○ Make WebGL TypedArrays general mechanism for operating on 

binary data
○ Spec and implementation already begun
○ FPS depending on window size hints at potential frame buffer 

handling improvements

Quake II in the Browser
Remaining Optimization



● HTML5 features unlock incredible new functionality
● ... with the help of huge leaps in script performance
● These demos push the bleeding edge, but we'll be 

seeing more and more "native" apps in the browser:
○ Games
○ Media and design tools
○ Development tools

● Work remains to get all the APIs and tools right
○ Only way to know how is to try

Wrapping Up



Id Software (Quake II): idsoftware.com
Bytonic Software (Jake II): bytonic.de/html/jake2.html
Khronos (OpenGL, WebGL): khronos.org

Thanks to Vladimir Vukićević, who got the whole Canvas3D 
story started

Special Thanks to Lasse Oorni of Covert BitOps for the 
Commodore 64 music.

Quake II (c) 2010 Id Software LLC. Quake and Quake II are 
registered trademarks of Id Software LLC. All Rights 
Reserved.

Links and Thanks



View live notes and ask questions about 
this session on Google Wave
http://bit.ly/io2010-gwt6




